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Gravitational action (with curvature-squared term)

1
S [ dz\/—g (R —2Ag + a1 R"""" R,y po + a2 R R, + a3R?)

- 167G E-H term curvature-squared term
the surface term
for the Einstein-Hilbert term for the curvature-squared term
Scn = 1550 J 477 tey/ =y (-20K) ?7?
“Gibbons-Hawking term” cannot be obtained directly !
reason

For theories including higher curvature term,
there is no corresponding surface term

alternative method

construct the action including up to second-derivative terms by introducing an
auxiliary field which is equivalent with the curvature squared action (on-shell)



Action (including second-order derivative terms)

l i ! LA WT | o L€
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Action (including second-order derivative terms)

1
167G

Sy =

de$\/_—g (@HIJE}G—R;LU;JJ + bl C.E}“Upgépupo' + b?ﬁéﬁyﬁé”p + b.?.'f,.f)z)

duvpo ... @uxiliary field (same symmetry properties with the Riemann tensor)

: . @. =G onen, &= g, }
Equation of Motion for @ [ - puo! piv

R;erzpcr + leé,wzpcr + 252@{;@}.@;}0} + 263@9{;@}.@&’0} =0

. L | . .
parameter choice [ QupGrey = 1 ((.D,LLPQVO' — OvpGuc — PucGup + (D:/crg,up)}

a] =

bé - 4blb.'3 + Dbgbg
2by {4b1 + (D — 2) ba} {201 + (D — 1) ba + D (D — 1) b3}

S (Riypm...) “ ch;.

equivalence

az =
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surface term for qu

1 .
S¢l = — dP o/ =5 (46" K,
surface L Y )
¢ 167G ( J
gb = _i R _ 4b2R<ILPgW7> 2 (b% — 4b1b3 + Db?bS) Rg(,u,pgva)
prpe 20 | M7 Aby + (D —2)by  {4by + (D —2) by} {2by + (D — 1) by + D (D — 1) b3}

surface term for the curvature squared action

1 .
SGGH — _W dD_lg}\/ —Y (20'K -+ 4@7,?'713_[{@3')

Generalized Gibbons Hawking term



(A)dS backgrounds solutions

2A 2A 2DA
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Noether charge

General form of the surface term

1
Sp = / dPLe/=~L
B 167TG OM Rt
diffeomorphism
ot — ot + ¢4 (leaves the horizon structure invariant)

Noether charge
1

Q&= vV —hd,, J*

2 Jom

TH1E) = VoI 6] = =V {L5 (€N — €'N¥)



Schwarzschild type metric

2= —f(r)dt* + f(r)" tdr? + hijdmida:j

conserved charge

Ql¢] =

1

e dP- Qx\/_(h:T——(?t )(J—I—F)

/Q — Zm QmAm \

T=% AnTn, A=A,

1

Fourier expansion

\ T, = aexp {im (at + g (p) —}—p-a?)}/
Virasoro algebra
. im3aA A
[Qma Qn] — 1 (m T n) QTT?,—I—TL - 167TGK, (U + F) 6m+n,0 [ Qm, = S::GOJ (O’ + F) 6fm,0 }

A ... surface area of black hole



Entropy (Using the Cardy formula)

Virasoro algebra

. im3aA kA
[Qm? Qn] — 1 (m T n) Qm‘l'n T 167TGKJ (O- + F) 5m+n,0 { QWL — 87TGQ’
central charge zero mode eigenvalues
C o K
c _ — A F
12 167TGH:A (g + F) @o TG (U + )

Cardy formula

S

27

cQo
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entropy for the curvature squared gravity

A
:Z(O'+F)




several specific examples

Einstein+Gauss-Bonnet

_ é 4a (D — 3) (aq,a2,a3) = (1,—4,1)
5—4{0—|— (D—l)A} [];—"} }

New Massive Gravity (3-dim)

A 1 (ay.az,a3) = (0,—1, 2
=1 (a2t { v

Critical Gravity (4-dim)
{{HL agz,az) = ([J, _;-'j_x ;-1}

S =0

consistent with the Wald entropy!



Conclusion

we have calculated the entropy for D-dimensional gravity
with curvature squared term

Introducing an auxiliary field, we have obtained the second-
derivative formed action which is equivalent with the curvature
squared action (on-shell)

we have calculated the surface action and the Black Hole
entropy for the Schwarzschild type metric.



special case of the parameters

a1:0

Lo = ¢" Ry + bog, + bso”

_ b b3
42 = 4boy ) 4bg(bg+Dbg)

_i (12 g b2
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